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Abstract. We study clustering on graphs with multiple edge types. Our main
motivation is that similarities between objects can be measured in many different
metrics, and so allowing graphs with multivariate edges significantly increases
modeling power. In this context the clustering problem becomes more challeng-
ing. Each edge/metric provides only partial information about the data; recover-
ing full information requires aggregation of all the similarity metrics. We gener-
alize the concept of clustering in single-edge graphs to multi-edged graphs and
discuss how this generates a space of clusterings. We describe a meta-clustering
structure on this space and propose methods to compactly represent the meta-
clustering structure. Experimental results on real and synthetic data are presented.

1 Introduction

Graphs are widely recognized as the standard modeling language to represent
relations between entities of a complex system. Entities in the data are repre-
sented as nodes while relationships between entities are represented as edges
between nodes. For instance, an email network would have email accounts as
nodes, and the email exchanges between two accounts form an edge between
the two nodes. Proteins (nodes) are connected in a protein interaction network
by an edge if the proteins are part of the same system function.

In many real-world problems, connections or similarities between entities
can be defined by many different relationships, where connections/similarities
are quantified by boolean (a connection exists or not), or continuous variables.
For example, similarity between two scientific articles can be defined based on
authors, citations to, citations from, keywords, titles, where they are published,
text similarity, etc.... Relationships between people can be based on the nature of
the relationship (e.g., business, family, friendships) or the means of communica-
tion (e.g., email, phone, personal meetings). Electronic files can be grouped by
their type (Latex, C, html), names, the time they are created, or the pattern they
are accessed. In these examples, there are multiple graphs that define relation-
ships between the subjects. In sociology these graphs are called “graphs with
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multiple relations, multivariate graphs, or multiplexed graphs.”[5] For brevity
we use “multiweighted graphs.” These multiweighted graphs differ from tradi-
tional multigraphs. In our case we have a fixed number of labeled edges rather
than a multigraph which has a variable number of unlabeled edges.

This paper studies the community detection problem on networks with mul-
tiple edges-types/relations. Clustering is a method to reduce the complexity of a
singly-weighted graph while still retaining much of its information. Groups of
vertices (clusters) are formed which are well connected within the cluster and
sparsely connected between clusters. This technique is a critical enabler in un-
supervised machine learning and continues to be a very active area of research.
Almost all methods however, require a singly-weighted graph. It is convenient
to aggregate multi-weighted edges to a single composite edge. However, the
choice of the aggregation function should be done cleverly, and we should be
able to analyze the inevitable loss of information in the results.

Consider the situation where several edge types share redundant informa-
tion yet as an ensemble combine to form some broader structure. For example
scientific journal articles can be connected by text similarity, abstract similarity,
keywords, shared authors, cross-citations, etc.... Many of these edge types re-
flect the topic of the document while others are also influenced by the location
of the work. Text, abstract, and keyword similarity are likely to be redundant in
conveying topic information (physics, math, biology) while shared authorship
(two articles sharing a common author) is likely to convey both topic and loca-
tion information because we tend to work with both those in our same field and
with those in nearby institutions. We say that the topic and location attributes are
latent because they do not exist explicitly in the data. We can represent much of
the variation in the data by two relatively independent clusterings based on the
topic of documents and their location. This compression of information from
five edge types to two meaningful clusterings is the goal of this paper.

1.1 Contributions

The community detection problem on networks with multiple edge types bears
many interesting problems. In our earlier work we studied how to compute an
aggregation scheme that best resonates with the ground-truth data, when such
data was available [12]. In this work we study the following questions: Is there
a meta-clustering structure, (i.e., are the clusterings clustered) and if so how do
we find it? How do we find significantly different clusterings for the same data?
Our main contributions in this paper are as follows.

— We describe how the space of clusterings can be searched using sampling
methods, and investigate the structure of this space. We introduce the meta-
clusters: while the clusterings vary with how we aggregate various similarity



measures, these clusterings gather around a small number of clusters. That
is clusterings are nicely clustered.

— We propose methods to efficiently represent the space of clusterings with
minimal loss of information. More specifically, if we can produce a handful
of clusterings that represent the meta-clusters, then these small number of
clusters can be used for data analysis, providing a more accurate and thor-
ough information of the data, at a reasonable increase in processing times.

— We apply our proposed techniques to a data set collected from scientific
articles in the arXiv database, and show that or proposed techniques can be
successfully adopted for analysis of real data.

1.2 An Illustrative Problem

We construct a simple multiweighted network to demonstrate latent classes. For
illustration, we assume our graph is perfectly embedded in R? as seen in Fig. 1a.
In this example each point on the plane represents a vertex, and two vertices are
connected by an edge if they are close in distance. The similarity/weight for each
edge is inversely proportional to the Euclidean distance. We see visually that
there are nine natural clusters. More interestingly we see that these clusters are
arranged symmetrically along two axes. These clusters have more structure than
the set {1,2,3,...,9}. Instead they have the structure {1,2,3} x {1,2,3}. An
example of such a structure would be the separation of academic papers along
two factors, {Physics, Mathematics, Biology} and {West Coast, Midwest, East
Coast}. The nine clusters (with examples like physics articles from the West or
biology articles from the Midwest) have underlying structure.

Our data sets do not directly provide this information. For instance with jour-
nal articles we can collect information about authors, where the articles are pub-
lished, and their citations. Each of these aspects provides only a partial view of
the underlying structure. Analogous to our geometric example above we could
consider features of the data as projections of the points to one dimensional sub-
spaces. Distances/similarities between the points in a projection have only par-
tial information. This is depicted pictorially in Fig. 1b. For instance, the green
projection represents a metric that clearly distinguishes between columns but
cannot differentiate between different communities on the same column. The
red projection on the other hand provides a diagonal sweep, capturing partial
information about columns and partial information about rows. Neither of the
two metrics can provide the full information for the underlying data. However
when considered as an ensemble they do provide a complete picture. Our goal is
to be able to tease out the latent factors of data from a given set of partial views.

In this paper, we will use this 3 x 3 example for conceptual purposes and for
illustrations. Our approach is construct many multi-weighted graphs by using
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(a) 270 vertices arranged in nine clus- (b) Two 1D graphs arranged to suggest
ters on the plane. Edges exist between their relationship to the underlying 3x3
vertices so that close points are well community structure. Both have clear
connected and distant points are poorly community structures that are related
connected. but not entirely descriptive of the under-

lying 3x3 communities.

Fig. 1. Illustrating clusters (a) underlying structure and (b) low-dimensiona/partial views

combinations of the partial views of the data. We will cluster these graphs and
analyze these clusters to recover the latent structure.

2 Background

A weighted graph is represented as a tuple G = (V, E), V a set of vertices and
E a set of edges. Each edge e¢; is a tuple e; = {vg, vy, w; | vg,vp € V,w; € R}
representing a connection between vertices v, and v, with weight w;. In this
work we replace w; € R with w; € R* with k being the number of edge types. We
will construct functions that map multiweighted edges w; € R* to composite
edge types f(w;)=w; €R. In this paper f will be linear w; =) a;w;.

2.1 Clustering

Intuitively, the goal of clustering is to break down the graph into smaller groups
such that vertices in each group are tightly coupled among themselves and
loosely coupled with the remainder of the network. Both the translation of this
intuition into a well-defined mathematical formula and design of associated al-
gorithms pose big challenges. Despite the high quality and the high volume of
the literature, the area continues to draw a lot of interest due to the growing im-
portance of the problem and the challenges posed by the size and mathematical
variety of the subject graphs.

Our goal here is to extend the concept of clustering to graphs with multiple
edge types without getting into the details of clustering algorithms and formu-
lations, since such a detailed study will be well beyond the scope of this paper.



In this paper, we used Graclus, developed by Dhillon et al[3], which uses the
top-down approach that recursively splits the graph into smaller pieces and Fast-
Community developed by Clauset et al[2] which uses an agglomerative approach
which optimizes the modularity metric. For further information on clustering see
Lancichinetti et al.[6].

2.2 Variation of Information of Clusterings

At the core of most of our discussions will be similarity between two cluster-
ings. Several metrics and methods have been proposed for comparing cluster-
ings, such as variation of information [9], scaled coverage measure [13], clas-
sification error [7-9], and Mirkin’s metric [10]. Out of these, we have used the
variation of information metric in our experiments.

Let Cy = <C’3,Cg, e ,C'é{) and C; = (Cf,C?,..., CK) be two cluster-
ings of the same node set. Let n be the total number of nodes, and P(C, k) =
‘CTICI be the probability that a node is in cluster C* in a clustering C'. Similarly
the probability that a node is in cluster g’k iln clustering C; and in cluster C"
in clustering C; is P(C;,Cj, k1) = L:C”' The entropy of information or
expectation value of learned information in Cj is defined

K
H(C;) ==Y _P(Ci,k)log P(Ci, k)
k=1

the mutual information shared by C; and Cj is

K K

I(C;,Cj) =Y Y P(Cy,Cj, k1) log P(Ci, Cj, k, 1),
k=11=1

Given these two quantities Meila defines the variation of information metric
by
dV[(Ci,Cj) :H(Cz)—i-H(CJ) —QI(Ci,Cj). (D)

Meila [9] explains the intuition behind this metric a follows. H(C;) denotes
the average uncertainty of the position of a node in clustering C;. If, however,
we are given C}, I(C;, C;) denotes average reduction in uncertainty of where a
node is located in C;. If we rewrite Equation (1) as

dv1(Ci, Cj) = (H(Cy) = 1(C, Cy)) + (H(C)) = 1(C3,Cy))

the first term measures the information lost if C; is the true clustering and we
know instead C;, and the second term is the opposite.
The variation of information metric can be computed in O(n) time.



2.3 Previous Work

Similar problems have been approached in previous work. Mucha et al.[11]
looked at community detection when multiple edge types are sampled in time
and strongly correlated. Dunlavy et al. [4] described this problem as a three di-
mensional Tensor and used a PARAFAC decomposition (SVD generalization)
to identify dominant factors.

3 Searching the Space of Clusterings

0 ,,1

From a multiweighted graph G = (V, E) with edgese; € £ = (Va, vp, (W7, w5, . ..

we can build a composite edge-type w; = > j ajw]. This composite edge-type
along with the vertex set V' define a graph G, indexed by the vector a;. We
may apply a traditional clustering algorithm C to this graph to obtain a clustering
C(Gq;) = Caq,. This process identifies with each point ar; € R* a clustering
Cq; - Thus a multiweighted graph is imbued with a space of clusterings.

We expect that different regions of this space will have different clusterings.
How drastic these differences are will depend on the particular multiweighted
graph. How can we characterize this space of clusterings? Are there homo-
geneous regions, easily identifiable boundaries, groups of similar clusterings,
etc...? We investigate the existence of a meta-clustering structure. That is we
search for whether or not several clusterings in this space exhibit community
structure themselves. In this section, we present our methods for these ques-
tions on the 3 x 3 data. We will later provide results on a larger data set.

3.1 Sampling the Clustering Space

To inspect the space of clusterings we sample in a Monte Carlo fashion. We
take points a; € R” such that |a;| = 1, and compute the appropriate graph and
clustering at each point. We may then compare these clusterings in aggregate.

As our first experiment, we take 16 random one-dimensional projections of
the points laid out in the plane shown in Fig. 1 and consider the projected-point-
wise distances in aggregate as a multiweighted graph. From this multiweighted
graph we take 800 samples of the linear space of clusterings. These 800 cluster-
ings approximate the clustering structure of the multiweighted graph.

The results of these experiments are presented in Figure 2(a). In this fig-
ure each row and column corresponds to a clustering of the graph. Entries in
the matrix represent the variation of information distance between two cluster-
ings. Therefore dark regions in this matrix are sets of clusterings that are highly
similar. White bands show informational independence between regions. The
rows/columns of this matrix have been ordered to have more similar clusterings
closer to each other so as to highlight the clusters of clusterings detected.
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Fig. 2. The Meta-clustering information (a) VI distances between 800 sampled clusterings. Ver-
tices are ordered to show optimal clustering of this graph. Dark blocks on the diagonal represent
clusters. The white band is a group of completely independent clusterings. (b) Three Clusterings
treated as nodes in a graph. Similar clusterings (top two) are connected with high-weighted edges.
Distant clusterings are connected with low-weighted edges.

3.2 Meta-clusters: Clusters of Clusterings

While it is interesting to know that significantly different clusterings can be
found, the lack of stable clustering structure is not helpful for applications of
clustering such as for unsupervised learning. We need to reduce this set of clus-
terings further. We approach this problem by applying the idea of clustering
onto this set of clusterings. We call this problem the meta-clustering problem.

We represent the clusterings as nodes in a graph and connect them with
edge-weights determined by the inverse of the variation of information metric
[9]. We inspect this graph to see if it contains clusters. That is, we cluster the
graph of clusterings to see if there exist some tightly coupled clusters of clus-
terings within the larger space. For instance in Fig. 2(b) the top two clusterings
differ only in the position of a single vertex and thus are highly similar. In con-
trast the bottom clustering is different from both and is weakly connected.

Figure 2(a) reveals the meta-clustering structure in our experiments. The
dark blocks around the diagonal correspond to meta-clusters. We can see two
big blocks in the upper left and lower right corners. Furthermore, there is a hier-
archical clustering structure within these blocks, as we see smaller blocks within
the larger blocks. In this experiment, we were able to observe meta-clusters. As
usual, results depend on the particular problem instance. While we do not claim
that one can always find such meta-clusters, we expect that they will exist in
many multi-weighted graphs, and exploiting the meta-clustering structure can
enable efficiently handling this space, which is the topic of the next section.



4 Efficient Representation of the Clusterings

In this section we study how to efficiently represent the meta-clustering struc-
ture. First we will study how to reduce a cluster of clusterings into a single
averaged or representative clustering. Then, we will study how to select and
order a small number of meta-clusters to cover the clustering space efficiently.

4.1 Averaging Clusterings within a Cluster

An Averaged
Clustering Graph

_>

Three Clusterings over the same nodes

Fig. 3. Showing the CSPA [14] averaging procedure for clusterings. Each clustering is displayed
as a block diagonal graph (or permutation) with two nodes connected if and only if they are in
the same cluster. Then an aggregate graph (right) is formed by the addition of these graphs. This
graph on the right is then clustered using a traditional algorithm. This clustering is returned as
the representative-clustering.

To increase the human accessibility of this information we reduce each clus-
ter of clusterings into a single representative clustering. We use the “Cluster-
based Similarity Partitioning Algorithm” (CSPA) proposed by Strehl et. al [14]
to combine several clusterings into a single average. In this algorithm each pair
of vertices is connected with an edge with weight equal to the number of clusters
in which they co-occur. If v, and v are in the same cluster in k of the clusterings
then in this new graph they are connected with weight k. If they are never in the
same cluster then they are not connected. We then cluster this graph and use
the resultant clustering as the representative. In Fig. 3 we depict the addition of
three clusterings to form an average graph which can then be clustered.

We perform this process on the clusters of clusterings found in section 3.2
and presented in Fig. 2(a) to obtain the representative-clusterings in Fig. 4.
We see that the product of the first two representative-clusterings identifies the
original nine clusterings with little error. We see also that the two factors are
identified perfectly by each of these clusterings individually.

4.2 Ordering by Set-Wise Information Content

In Fig. 4, the original 3x3 community structure can be reconstructed using only
the first two representative-clusterings. Why are these two chosen first? Select-
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Fig. 4. Representative-Clusterings of the four dominant clusters-of-clusterings from Fig. 2(a).
Clusterings are displayed as colorings of the original points in the 2-d plane. These are ordered
to maximize cumulative set-wise information. Notice how the first two representative-clusterings
recover the original nine clusterings exactly.

ing the third and fourth representative-clusterings would not have had this pleas-
ant result. How should we order the set of representative-clusterings?

We may judge a set of representative-clusterings by a number of factors: (i)
How many of our samples ascribe to the associated meta-clusters, what fraction
of the space of clusterings do they cover? (ii) How much information do the
clusterings cover as a set? (iii) How redundant are the clusterings? How much
informational overlap is present? We would like to maximize information while
minimizing redundancy. In Fig. 4 we ordered the representative-clusterings to
maximize setwise information. Minimizing redundancy came as a fortunate
side-effect. Notice how each of the clusterings in order is independent from the
preceding ones. Knowing that a vertex is red in the first image tells you nothing
about the color of the vertex in the second. The second therefore brings only
novel information and no redundancy.

To compute the information content of a set of clusterings we extend the
Variation of Information metric in a natural way. In section 2.2 we introduced
the mutual information of two clusterings as follows:

K K

I(C;,Cj) =Y Y P(Cy,Cj, k1) log P(C;, Cj, k, 1),
k=11=1

where P() is the probability that a randomly selected node was in the specified
clusters. This is equivalent to the self-information of the Cartesian product of

the two clusterings. Its extension to a set of clusterings /(Cy,C3, ..., C,) is

K ! Kl//

>3 .Y P(CaiCp, ..., Cuad,...,2)10g P(Ca,Cp, ..., Cuyasb,..., 2).
a=1 b=1 z=1



For a large number of clusterings or large K this quickly becomes inconve-
nient. In these cases we order the clusterings by adding new clusterings to the
set based on maximizing the minimum pairwise distance to every other cluster-
ing currently in the set. This process is seeded with the informationally maxi-
mal pair within the set. This does not avoid triple-wise information overlap but
works well in practice.

S Physics Articles from arXiv.org

ArXiv.org releases convenient metadata (title, authors, etc...) for all articles in
their database. Additionally, a special set of 30 000 high energy physics articles
are released with abstracts and citation networks. We apply our process to this
network of papers with edge types Titles, Authors Abstracts and Citations.

VI Distances Between Clusterings

Dendrogram of Graph of Clusterings

Fig. 5. (a) The pairwise distances between the sampled clusterings form a graph. Note the dark
blocks along the diagonal. These are indicative of tightly knit clusters. (b) A dendrogram of this
graph. We use the ordering of the vertices picked out by the dendrogram to optimally highlight
the blocks in the left image.

Articles are connected by title or abstract based on the cosine similarity of
the text (using the bag of words model[1]). Two articles are connected by author
by the number of authors that the two articles have in common. Two articles are
connected by citation if either article cites the other (undirected). We inspect
this system with the following process discussed in greater detail above.

These graphs are normalized by the Ly norm and then the space of compos-
ite edge types is sampled uniformly. That is w; = Z?Zl o;w;, where o; €
(=1,1) , w; € ({titles, abstract, authors, citation}. The resulting graphs are
then clustered using Clauset et al’s FastModularity[2] algorithm. The resulting
clusterings are compared in a graph which is then clustered to produce clusters



of clusterings. The clusters of clusterings are averaged [14] and we inspect the
resultant representative-clusterings.

The similarity matrix of the graph of clusterings is shown in Fig. 5(a). The
presence of blocks on the diagonal imply clusters of clusterings. From this pro-
cess we obtain representative-clusterings. The various partitionings of the orig-
inal set of papers vary considerably (large VI distance) yet exhibit high modu-
larity scores implying a variety of high-quality clusterings within the dataset.

Table 1. Commonly appearing words (stemmed) in two distinct representative-clusterings. Clus-
ters within each clustering correspond to well known subfields in High-Energy Physics (subfield
1,2,3,4,5 will replace these with actual names in a bit). This data however does not show a strong
distinction between the clusterings. Furher investigation is warranted.

lCluster‘ Statistically Significant Words in Clustering 1 ‘
1 quantum, algebra, integr, equat, model, chern-simon, lattic, particl, affin
2 potenti, casimir, self-dual, dilaton, induc, cosmolog, brane, anomali, scalar
3 black, hole, brane, supergrav, cosmolog, ads/cft, sitter, world, entropi
4 cosmolog, black, hole, dilaton, graviti, entropi, dirac, 2d, univers

5 |d-brane, tachyon, string, matrix, theori, noncommut, dualiti, supersymmetr, n=2

lCluster\ Statistically Significant Words in Clustering 2
1 potenti, casimir, self-dual, dilaton, induc, energi, scalar, cosmolog, gravit
2 integr, model, toda, equat, function, fermion, casimir, affin, dirac
3 tachyon, d-brane, string, orbifold, n=2, n=1, dualiti, type, supersymmetr
4 black, hole, noncommut, supergrav, brane, sitter, entropi, cosmolog, graviti

Analysis of this dataset is challenging and still in progress. We can look
at articles in a clustering and inspect attributes like the country (by submitting
e-mail’s country code), or words which occur more often than statistically ex-
pected given the corpus. Most clusterings found show a separation into various
topics identifyable by domain experts (example in Table 1) however a distinc-
tion between clusterings has not yet been found. While the VI distance between
metaclusterings presented in Fig. 5(a) is large it has so far proven difficult to
identify the qualitative distinction for the quantitative difference. More in depth
inspection by a domain expert may be necessary.

6 Conclusion and Future Work

We investigated clustering in the context of network data with multiple relation-
ships between nodes. We found that a rich clustering structure can exist with
clusters of clusterings. In an example we found that by reducing this cluster-
ing structure we uncovered latent classes which explained the underlying graph
very compactly. We presented a simple method that works well on simple cases.



In the future it will be interesting to apply these methods to more challenging
problems and see which aspects become interesting. There is much room for
growth in this topic. Ongoing work includes more intelligent sampling (inten-
tionally finding distinct clusterings), effects of adding non-linear combinations
of edge-types, and searching the space for clusterings with desired attributes.
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